Published in

MDPI, Materials, 2(13), p. 446, 2020

DOI: 10.3390/ma13020446

Links

Tools

Export citation

Search in Google Scholar

Facile Synthesis of Sandwich-Like rGO/CuS/Polypyrrole Nanoarchitectures for Efficient Electromagnetic Absorption

Journal article published in 2020 by Bing Zhang, Shaofeng Lin, Jingjing Zhang, Xiaopeng Li, Xiaodong Sun
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Currently, electromagnetic pollution management has gained much attention due to the various harmful effects on wildlife and human beings. Electromagnetic absorbers can convert energy from electromagnetic waves into thermal energy. Previous reports have demonstrated that reduced graphene oxide (rGO) makes progress in the electromagnetic absorption (EA) field. But the high value of permittivity of rGO always mismatches the impedance which results in more electromagnetic wave reflection on the surface. In this work, sandwich-like rGO/CuS/polypyrrole (PPy) nanoarchitectures have been synthesized by a facile two-step method. The experimental result has shown that a paraffin composite containing 10 wt.% of rGO/CuS/PPy could achieve an enhanced EA performance both in bandwidth and intensity. The minimum reflection loss (RL) value of −49.11 dB can be reached. Furthermore, the effective bandwidth can cover 4.88 GHz. The result shows that the as-prepared rGO/CuS/PPy nanoarchitectures will be a promising EA material.