Published in

CSIRO Publishing, Marine & Freshwater Research, 9(71), p. 1086, 2020

DOI: 10.1071/mf19110

Links

Tools

Export citation

Search in Google Scholar

Turnover is replaced by nestedness with increasing geographical distance in bacterial communities of coastal shallow lakes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this study we measured the relative contribution of two components of β-diversity, turnover and nestedness, of bacterioplankton among 25 shallow lakes in southern Brazil and tested their relationship with local (environment, chlorophyll-a and biomass of phytoplanktonic classes) and landscape variables, as well as geographical distance. We predicted that turnover would be the largest share of total β-diversity due to the variation of local characteristics among lakes. Further, we expected nestedness to increase at the expense of turnover with increasing geographical distance among lakes due to dispersal limitation. The results indicated a higher contribution of turnover than nestedness to total β-diversity, which was driven by local factors. When the relationship between β-diversity components and the spatial extent between each lake and all other lakes was considered, turnover was replaced by nestedness with increasing geographical distance for 8 (the furthermost lakes) of the 25 lakes likely because of a combination of decreasing dispersal due to distance and richness differences due to wind-driven mass effects. The results of this study suggest a role for nestedness as an indicator of dispersal limitation owing to geographical distance and wind dispersal, and for turnover as an indicator of species sorting because of environmental filters for these freshwater bacterial communities.