Published in

Wiley, Impact, 10(2019), p. 76-78, 2019

DOI: 10.21820/23987073.2019.10.76

Links

Tools

Export citation

Search in Google Scholar

New crystallography using relativistic femtosecond electron pulses

Journal article published in 2019 by Jinfeng Yang
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ultrafast electron microscopy (UEM) with femtosecond temporal resolution has long been a cherished dream tool for scientists wishing to study ultrafast structural dynamics in materials, appealing to researchers from across a wide range of speciality areas. Associate Professor Jinfeng Yang, from the Institute of Scientific and Industrial Research, at Osaka University in Japan, leads a team working on ultrafast electron diffraction (UED) and ultrafast electron microscopy (UEM) development. 'Through the study of ultrafast phenomena with the UEM, we hope to gain a deeper understanding of materials and their physical properties and achieve a novel breakthrough in materials science,' he highlights. 'We fully expect to facilitate new knowledge and discoveries as a result of our work.' The team's work on relativistic UEM has led to the creation of unprecedented innovative technology that enables femtosecond atomic-scale imaging using just a single shot measurement. This will pave the way for the study of dynamics of irreversible processes within materials sciences. Not only does the group's work represent a huge step forward in innovative technology for researchers working across a number of scientific fields, but it is also progress in developing a very compact, ultra-high voltage electron microscopy. It can also be used in a variety of settings such as general research institutions and laboratories. In addition, through its provision of a solution to the problem of femtosecond temporal resolution our technology is breaking new ground in electronic microscopy developments,' says Yang.