Published in

Springer Nature [academic journals on nature.com], Gene Therapy, 1(20), p. 69-83, 2012

DOI: 10.1038/gt.2011.216

Links

Tools

Export citation

Search in Google Scholar

Systemic delivery of scAAV9 in fetal macaques facilitates neuronal transduction of the central and peripheral nervous systems.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Correction of perinatally lethal neurogenetic diseases requires efficient transduction of several cell types within the relatively inaccessible CNS. Intravenous AAV9 delivery in mouse has achieved development stage-specific transduction of neuronal cell types, with superior neuron-targeting efficiency demonstrated in prenatal compared with postnatal recipients. Because of the clinical relevance of the non-human primate (NHP) model, we investigated the ability of AAV9 to transduce the NHP CNS following intrauterine gene therapy (IUGT). We injected two macaque fetuses at 0.9 G with 1 × 10(13) vg scAAV9-CMV-eGFP through the intrahepatic continuation of the umbilical vein. Robust green fluorescent protein (GFP) expression was observed for up to 14 weeks in the majority of neurons (including nestin-positive cells), motor neurons and oligodendrocytes throughout the CNS, with a significantly lower rate of transduction in astrocytes. Photoreceptors and neuronal cell bodies in the plexiform and ganglionic retinal layers were also transduced. In the peripheral nervous system (PNS), widespread transduction of neurons was observed. Tissues harvested at 14 weeks showed substantially lower vector copy number and GFP levels, although the percentage of GFP-expressing cells remained stable. Thus, AAV9-IUGT in late gestation efficiently transduces both the CNS and PNS with neuronal predilection, of translational relevance to hereditary disorders characterized by perinatal onset of neuropathology.