Published in

American Chemical Society, Journal of Medicinal Chemistry, 1(55), p. 209-222, 2011

DOI: 10.1021/jm201140v

Links

Tools

Export citation

Search in Google Scholar

Molecular basis of structure-activity relationships between salphen metal complexes and human telomeric DNA quadruplexes.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The first X-ray crystal structures of nickel(II) and copper(II) salphen metal complexes bound to a quadruplex DNA are presented. Two structures have been determined and show that these salphen-metal complexes bind to human telomeric quadruplexes by end-stacking, with the metal in each case almost in line with the potassium ion channel. Quadruplex and duplex DNA binding is presented for these two and other related salphen complexes, all with side-chains terminating in pyrrolidino end-groups and differing patterns of substitution on the salphen core. The crystal structures are able to provide rationalizations for the structure-activity data, and in particular for the superior quadruplex-binding of the nickel complexes compared to that of the copper-containing ones. The complexes show significant antiproliferative activity for the compounds in a panel of cancer cell lines. They also show telomerase inhibitory activity in the telomerase TRAP-LIG assay.