Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], European Journal of Human Genetics, 11(8), p. 861-868, 2000

DOI: 10.1038/sj.ejhg.5200552

Links

Tools

Export citation

Search in Google Scholar

Spectrum of mutations in the Fanconi anaemia group G gene, FANCG/XRCC9

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

FANCG was the third Faconi anaemia gene identified and proved to be identical to the previously cloned XRCC9 gene. We present the pathogenic mutations and sequence variants we have so far identified in a panel of FA-C patients. Mutation screening was performed by PCR, single strand conformational polymorphism analysis and protein truncation tests. Altogether 18 mutations have been determined in 20 families - 97% of all expected mutant alleles. All mutation types have been found, with the exception of large deletions, the large majority is predicted to lead to shortened proteins. One stop codon mutation, E105X, has been found in several German patients and this founder mutation accounts for 44% of the mutant FANCG alleles in German FA-G patients. Comparison of clinical phenotypes shows that patients homozygous for this mutation have an earlier onset of the haematological disorder than most other FA-C patients. The mouse Fancg sequence was established in order to evaluate missense mutations. A putative missense mutation, L71P, in a possible leucine zipper motif may affect FANCG binding of FANCA and seems to be associated with a milder clinical phenotype.