Published in

American Association of Immunologists, The Journal of Immunology, 9(161), p. 4555-4562, 1998

DOI: 10.4049/jimmunol.161.9.4555

Links

Tools

Export citation

Search in Google Scholar

Autoimmunity develops in lupus-prone NZB mice despite normal T cell tolerance

Journal article published in 1998 by Joan Wither ORCID, Brian Vukusic
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractNZB mice spontaneously develop an autoimmune disease characterized by production of anti-RBC, -lymphocyte, and -ssDNA Abs. Evidence suggests that the NZB mouse strain has all of the immunologic defects required to produce lupus nephritis but lacks an MHC locus that allows pathogenic anti-dsDNA Ab production. The capacity to produce diverse autoantibodies in these mice raises the possibility that they possess a generalized defect in self-tolerance. To determine whether this defect is found within the T cell subset, we backcrossed a transgene encoding bovine insulin (BI) onto the NZB background. In nonautoimmune BALB/c mice, the BI transgene induces a profound but incomplete state of T cell tolerance mediated predominantly by clonal anergy. Comparison of tolerance in NZB and BALB/c BI-transgenic mice clearly demonstrated that NZB T cells were at least as tolerant to BI as BALB/c T cells. NZB BI-transgenic mice did not spontaneously produce anti-BI Abs, and following antigenic challenge, BI-specific Ab production was comparably reduced in both BI-transgenic NZB and BALB/c mice. Further, in vitro BI-specific T cell proliferation and cytokine secretion were appropriately decreased for primed lymph node and splenic T cells derived from NZB BI-transgenic relative to their nontransgenic counterparts. These data indicate that a generalized T cell tolerance defect does not underlie the autoimmune disease in NZB mice. Instead, we propose that the T cell-dependent production of pathogenic IgG autoantibodies in these mice arises from abnormal activation of T cells in the setting of normal but incomplete tolerance.