Published in

Association for Computing Machinery (ACM), ACM Transactions on Embedded Computing Systems, 1(19), p. 1-28, 2020

DOI: 10.1145/3371154

Links

Tools

Export citation

Search in Google Scholar

Optimizing Deep Learning Inference on Embedded Systems Through Adaptive Model Selection

Journal article published in 2020 by Vicent Sanz Marco, Ben Taylor, Zheng Wang ORCID, Yehia Elkhatib
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Deep neural networks (DNNs) are becoming a key enabling technique for many application domains. However, on-device inference on battery-powered, resource-constrained embedding systems is often infeasible due to prohibitively long inferencing time and resource requirements of many DNNs. Offloading computation into the cloud is often unacceptable due to privacy concerns, high latency, or the lack of connectivity. Although compression algorithms often succeed in reducing inferencing times, they come at the cost of reduced accuracy. This article presents a new, alternative approach to enable efficient execution of DNNs on embedded devices. Our approach dynamically determines which DNN to use for a given input by considering the desired accuracy and inference time. It employs machine learning to develop a low-cost predictive model to quickly select a pre-trained DNN to use for a given input and the optimization constraint. We achieve this first by offline training a predictive model and then using the learned model to select a DNN model to use for new, unseen inputs. We apply our approach to two representative DNN domains: image classification and machine translation. We evaluate our approach on a Jetson TX2 embedded deep learning platform and consider a range of influential DNN models including convolutional and recurrent neural networks. For image classification, we achieve a 1.8x reduction in inference time with a 7.52% improvement in accuracy over the most capable single DNN model. For machine translation, we achieve a 1.34x reduction in inference time over the most capable single model with little impact on the quality of translation.