Published in

De Gruyter, Reviews in the Neurosciences, 2(31), p. 121-141, 2019

DOI: 10.1515/revneuro-2019-0059

Links

Tools

Export citation

Search in Google Scholar

Could electrical coupling contribute to the formation of cell assemblies?

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Cell assemblies and central pattern generators (CPGs) are related types of neuronal networks: both consist of interacting groups of neurons whose collective activities lead to defined functional outputs. In the case of a cell assembly, the functional output may be interpreted as a representation of something in the world, external or internal; for a CPG, the output ‘drives’ an observable (i.e. motor) behavior. Electrical coupling, via gap junctions, is critical for the development of CPGs, as well as for their actual operation in the adult animal. Electrical coupling is also known to be important in the development of hippocampal and neocortical principal cell networks. We here argue that electrical coupling – in addition to chemical synapses – may therefore contribute to the formation of at least some cell assemblies in adult animals.