Dissemin is shutting down on January 1st, 2025

Published in

Hindawi, Journal of Healthcare Engineering, (2020), p. 1-11, 2020

DOI: 10.1155/2020/1414597

Links

Tools

Export citation

Search in Google Scholar

Dynamic Rule-Based Algorithm to Tune Insulin-on-Board Constraints for a Hybrid Artificial Pancreas System

Journal article published in 2020 by Arthur Bertachi ORCID, Lyvia Biagi, Aleix Beneyto, Josep Vehí ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The artificial pancreas (AP) is a system intended to control blood glucose levels through automated insulin infusion, reducing the burden of subjects with type 1 diabetes to manage their condition. To increase patients’ safety, some systems limit the allowed amount of insulin active in the body, known as insulin-on-board (IOB). The safety auxiliary feedback element (SAFE) layer has been designed previously to avoid overreaction of the controller and thus avoiding hypoglycemia. In this work, a new method, so-called “dynamic rule-based algorithm,” is presented in order to adjust the limits of IOB in real time. The algorithm is an extension of a previously designed method which aimed to adjust the limits of IOB for a meal with 60 grams of carbohydrates (CHO). The proposed method is intended to be applied on hybrid AP systems during 24 h operation. It has been designed by combining two different strategies to set IOB limits for different situations: (1) fasting periods and (2) postprandial periods, regardless of the size of the meal. The UVa/Padova simulator is considered to assess the performance of the method, considering challenging scenarios. In silico results showed that the method is able to reduce the time spent in hypoglycemic range, improving patients’ safety, which reveals the feasibility of the approach to be included in different control algorithms.