Published in

The Electrochemical Society, ECS Transactions, 17(19), p. 51-57, 2009

DOI: 10.1149/1.3242368

Links

Tools

Export citation

Search in Google Scholar

Characterization of SOFC electrode microstructure using nano-scale X-ray Computed Tomography and Focused Ion Beam techniques: A comparative study

Journal article published in 2009 by Pr Shearing ORCID, Np Brandon, Jeff Gelb
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In solid oxide fuel cells (SOFC) the redox reactions are supported by composite porous materials and, therefore, the electrochemical activity of an electrode is a direct function of its microstructure. Ni-YSZ (Yttria Stabilized Zirconia) is a common choice for the anode material in SOFC. Recently advances in tomographic techniques have enabled researchers to probe electrode microstructures providing unprecedented access to a wealth of microstructural information regarding the distribution of ionic, electronic and pore phases in three dimensions. In this paper nano-scale X-ray Computed Tomography (nCT) and Focused Ion Beam (FIB) techniques have been used to characterize microstructures from the same Ni-YSZ anode sample, 3D reconstruction from both techniques are presented and a quantitative and qualitative comparison is provided. An advanced technique for sample preparation for nCT is also presented. ©The Electrochemical Society.