Published in

Beilstein-Institut, Beilstein Journal of Nanotechnology, (11), p. 141-146, 2020

DOI: 10.3762/bjnano.11.12

Links

Tools

Export citation

Search in Google Scholar

Fabrication of Ag-modified hollow titania spheres via controlled silver diffusion in Ag–TiO2 core–shell nanostructures

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Orange circle
Preprint: archiving restricted
Orange circle
Postprint: archiving restricted
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Inorganic hollow spheres find a growing number of applications in many fields, including catalysis and solar cells. Hence, a simple fabrication method with a low number of simple steps is desired, which would allow for good control over the structural features and physicochemical properties of titania hollow spheres modified with noble metal nanoparticles. A simple method employing sol–gel coating of nanoparticles with titania followed by controlled silver diffusion was developed and applied for the synthesis of Ag-modified hollow TiO2 spheres. The morphology of the synthesized structures and their chemical composition was investigated using SEM and X-ray photoelectron spectroscopy, respectively. The optical properties of the synthesized structures were characterized using UV–vis spectroscopy. Ag–TiO2 hollow nanostructures with different optical properties were prepared simply by a change of the annealing time in the last fabrication step. The synthesized nanostructures exhibit a broadband optical absorption in the UV–vis range.