Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Journal of Physics: Photonics, 3(2), p. 034001, 2020

DOI: 10.1088/2515-7647/ab87fd

Links

Tools

Export citation

Search in Google Scholar

Highly non-linear ionization of atoms induced by intense high-harmonic pulses

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Intense extreme-ultraviolet (XUV) pulses enable the investigation of XUV-induced non-linear processes and are a prerequisite for the development of attosecond pump - attosecond probe experiments. While highly non-linear processes in the XUV range have been studied at free-electron lasers (FELs), high-harmonic generation (HHG) has allowed the investigation of low-order non-linear processes. Here we suggest a concept to optimize the HHG intensity, which surprisingly requires a scaling of the experimental parameters that differs substantially from optimizing the HHG pulse energy. As a result, we are able to study highly non-linear processes in the XUV range using a driving laser with a modest (≈ 10 mJ) pulse energy. We demonstrate our approach by ionizing Ar atoms up to Ar5 + , requiring the absorption of at least 10 XUV photons.