Published in

Cambridge University Press, International Journal of Microwave and Wireless Technologies, 5(12), p. 398-408, 2020

DOI: 10.1017/s1759078719001569

Links

Tools

Export citation

Search in Google Scholar

Dual-polarized, monostatic antenna array with improved Tx–Rx isolation for 2.4 GHz in-band full duplex applications

Journal article published in 2020 by Haq Nawaz ORCID, Ahmad Umar Niazi, M. Abdul Basit, Furqan Shaukat, Muhammad Usman
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractThis paper presents a two-elements based, dual polarized, single layer, patch antenna array with improved isolation between transmit (Tx) and receive (Rx) ports for 2.4 GHz in-band full duplex (IBFD) or simultaneous transmit and receive wireless applications. The differential feeding deployed at the Rx port effectively suppresses the coupling which is termed as self-interference from the Tx port to achieve high Tx–Rx interport isolation. A simple 3 dB/180° ring hybrid coupler with nice amplitude and phase balance characteristics has been used for differential Rx operation. The mathematical description for a differential feeding based self-interference cancellation mechanism is also presented for the proposed dual polarized IBFD antenna array. The measurement results for the implemented prototype of the antenna array demonstrate very nice levels of Tx–Rx interport isolation. The implemented single layer, compact antenna array presents 10 dB return-loss bandwidth of more than 50 MHz for both Tx and Rx ports. The prototype achieves >80 dB peak interport isolation and 75 dB (65 dB) isolation in 20 MHz (50 MHz) bandwidth.