Published in

Oxford University Press, The Journal of Infectious Diseases, 10(221), p. 1713-1723, 2019

DOI: 10.1093/infdis/jiz658

MDPI, Proceedings of the Royal Society of Victoria, 1(50), p. 95, 2020

DOI: 10.3390/proceedings2020050095

Links

Tools

Export citation

Search in Google Scholar

Analysis of Humoral Immune Responses in Chikungunya Virus (CHIKV)-Infected Patients and Individuals Vaccinated With a Candidate CHIKV Vaccine

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes severe flu-like symptoms. The acute symptoms disappear after 1 week, but chronic arthralgia can persist for years. In this study, humoral immune responses in CHIKV-infected patients and vaccinees were analyzed. Methods Alphavirus neutralization activity was analyzed with pseudotyped lentiviral vectors, and antibody epitope mapping was performed with a peptide array. Results The greatest CHIKV neutralization activity was observed 60–92 days after onset of symptoms. The amount of CHIKV-specific antibodies and their binding avidity and cross-reactivity with other alphaviruses increased over time. Chikungunya virus and o’nyong-nyong virus (ONNV) were both neutralized to a similar extent. Linear antibody binding epitopes were mainly found in E2 domain B and the acid-sensitive regions (ASRs). In addition, serum samples from healthy volunteers vaccinated with a measles-vectored chikungunya vaccine candidate, MV-CHIK, were analyzed. Neutralization activity in the samples from the vaccine cohort was 2- to 6-fold lower than in samples from CHIKV-infected patients. In contrast to infection, vaccination only induced cross-neutralization with ONNV, and the E2 ASR1 was the major antibody target. Conclusions These data could assist vaccine design and enable the identification of correlates of protection necessary for vaccine efficacy.