Published in

MDPI, Cells, 11(8), p. 1357, 2019

DOI: 10.3390/cells8111357

Links

Tools

Export citation

Search in Google Scholar

The Oncogene AF1Q is Associated with WNT and STAT Signaling and Offers a Novel Independent Prognostic Marker in Patients with Resectable Esophageal Cancer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AF1q impairs survival in hematologic and solid malignancies. AF1q expression is associated with tumor progression, migration and chemoresistance and acts as a transcriptional co-activator in WNT and STAT signaling. This study evaluates the role of AF1q in patients with resectable esophageal cancer (EC). A total of 278 patients operated on for EC were retrospectively included and the expression of AF1q, CD44 and pYSTAT3 was analyzed following immunostaining. Quantified data were processed to correlational and survival analysis. In EC tissue samples, an elevated expression of AF1q was associated with the expression of CD44 (p = 0.004) and pYSTAT3 (p = 0.0002). High AF1q expression in primary tumors showed high AF1q expression in the corresponding lymph nodes (p = 0.016). AF1q expression was higher after neoadjuvant therapy (p = 0.0002). Patients with AF1q-positive EC relapsed and died earlier compared to patients with AF1q-negative EC (disease-free survival (DFS), p = 0.0005; disease-specific survival (DSS), p = 0.003); in the multivariable Cox regression model, AF1q proved to be an independent prognostic marker (DFS, p = 0.01; DSS, p = 0.03). AF1q is associated with WNT and STAT signaling; it impairs and independently predicts DFS and DSS in patients with resectable EC. Testing AF1q could facilitate prognosis estimation and provide a possibility of identifying the patients responsive to the therapeutic blockade of its oncogenic downstream targets.