Published in

MDPI, Polymers, 1(12), p. 83, 2020

DOI: 10.3390/polym12010083

Links

Tools

Export citation

Search in Google Scholar

Selective and Colorimetric Detection of p-Nitrophenol Based on Inverse Opal Polymeric Photonic Crystals

Journal article published in 2020 by Lu Li ORCID, Tiantian Meng, Wanbin Zhang, Ying Su, Juan Wei, Xinwei Shi, Guanghua Zhang
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The detection of p-nitrophenol (PNP) is of great significance for assessment of environment pollution and potential health risks. In this study, based on inverse opal polymeric photonic crystals (IOPPCs), a selective and visual sensor for high-performance PNP detection is developed. Due to their unique optical properties, IOPPCs report events by change of color, which can easily be observed by the naked eye. Hydroxyethyl methacrylate (HEMA) was selected as the functional monomer with which to fabricate the IOPPCs. By precisely adjusting the molar ratio between the functional monomer and the crosslinker, the sensors were only able to be sensitive to a specific solution, thus realizing the visual, selective, and semi-quantitative detection of PNP. When the sensors were immersed in different concentrations of PNP solution, their Bragg diffraction wavelengths showed different redshifts. The color of the IOPPCs changed from green to red as the peak shift of Bragg diffraction occurred. In addition, the IOPPCs displayed good interference immunity and reusability.