Published in

Optica, Applied Optics, 2(59), p. 271, 2020

DOI: 10.1364/ao.59.000271

Links

Tools

Export citation

Search in Google Scholar

Characterization of optofluidic devices for the sorting of sub-micrometer particles

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, we investigate methods of fabricating a device for the optical actuation of nanoparticles. To create the microfluidic channel, we pursued three fabrication methods: SU-8 to molded polydimethylsiloxane soft lithography, laser etching of glass, and deep reactive ion etching of fused silica. We measured the surface roughness of the etched sidewalls, and the laser power transmission through each device. We then measured the radiation pressure on 0.5-µm particles in the best-performing fabricated device (etched fused silica) and in a square glass capillary.