Published in

MDPI, Coatings, 1(10), p. 27, 2020

DOI: 10.3390/coatings10010027

Links

Tools

Export citation

Search in Google Scholar

Preparation and Photocatalytic Property of Ag Modified Titanium Dioxide Exposed High Energy Crystal Plane (001)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

TiO2 exposed high energy crystal plane (001) was prepared by the sol-gel process using butyl titanate as the titanium source and hydrofluoric acid as the surface control agent. Ag-TiO2 was prepared by depositing Ag on the crystal plane of TiO2 (101) with a metal halide lamp. The surface morphology, interplanar spacing, crystal phase composition, ultraviolet absorption band, element composition, and valence state of the samples were characterized by using field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectrum (UV-Vis-Abs), and X-ray photoelectron spectroscopy (XPS), respectively. The formation mechanism of high energy crystal plane (001) was discussed, and the photocatalytic activities were evaluated by following degradation of methyl orange. The results show that TiO2 exposed the (001) crystal plane with a ratio of 41.8%, and Ag can be uniformly deposited on the crystal plane of TiO2 (101) by means of metal halide lamp deposition. Under the same conditions, the degradation rate of methyl orange by deposited Ag-TiO2 reaches as much as 93.63% after 60 min using the metal halide lamp (300 W) as an illuminant, 81.89% by non-deposited samples and 75.20% by nano-TiO2, causing a certain blue shift in the light absorption band edge of TiO2. Ag-TiO2 has the best photocatalytic performance at a pH value of 2.