Published in

Canadian Science Publishing, Canadian Geotechnical Journal, 12(56), p. 1999-2003, 2019

DOI: 10.1139/cgj-2017-0718

Links

Tools

Export citation

Search in Google Scholar

Using neutron spectroscopy to measure soil-water retention at high suction ranges

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Laboratory determination of water retention curves for geosynthetic clay liners (GCLs) and their bentonite components are time-consuming, especially for high suction ranges. This paper explores the potential use of neutron spectroscopy as a useful method to assess the water retention properties of montmorillonite at suction levels >10 MPa for GCL studies. The results from neutron spectroscopy are in good agreement with traditional methods when assessing the water retention of bentonite and GCLs. Additionally, the primary advantage of neutron scattering is that, contrary to conventional methods, water populations within the clay matrix, such as bulk-like water, confined water, and structure OH, are observed and can be quantified independently.