Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-56457-0

Links

Tools

Export citation

Search in Google Scholar

The Influence of Solar Spectrum and Concentration Factor on the Material Choice and the Efficiency of Multijunction Solar Cells

Journal article published in 2019 by Daniel N. Micha ORCID, Ricardo T. Silvares Junior
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIn this work, we revisit the theoretical study on the conversion efficiency of series-connected multijunction solar cells. The theoretical method, based on the detailed balance model, is then applied to devices with 2 to 6 junctions under different illumination conditions. As results, (i) we show that the peaks in the efficiency distribution occur for recurrent values of bottom junction bandgap energy corresponding to atmospheric absorption in the solar spectrum, and (ii) we demonstrate that variations in the number of junctions, in the incident solar spectrum, and in the concentration factor lead to changes in the optimum bandgap energy set but that the bottom junction bandgap energy only changes among the recurrent values presented before. Additionally, we highlight that high conversion efficiencies take place for a broad distribution of bandgap energy combination, which make the choice of materials for the device more flexible. Therefore, based on the overall results, we propose more than a hundred III-V, II-VI and IV semiconductor material candidates to compose the bottom junction of highly efficient devices.