Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-56412-z

Links

Tools

Export citation

Search in Google Scholar

KCa3.1 channel blockade attenuates microvascular remodelling in a large animal model of bleomycin-induced pulmonary fibrosis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIdiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with limited therapeutic options and poor prognosis. IPF has been associated with aberrant vascular remodelling, however the role of vascular remodelling in pulmonary fibrosis is poorly understood. Here, we used a novel segmental challenge model of bleomycin-induced pulmonary fibrosis in sheep to evaluate the remodelling of the pulmonary vasculature, and to investigate the changes to this remodelling after the administration of the KCa3.1 channel inhibitor, senicapoc, compared to the FDA-approved drug pirfenidone. We demonstrate that in vehicle-treated sheep, bleomycin-infused lung segments had significantly higher blood vessel density when compared to saline-infused control segments in the same sheep. These microvascular density changes were significantly attenuated by senicapoc treatment. The increases in vascular endothelial growth factor (VEGF) expression and endothelial cell proliferation in bleomycin-infused lung segments were significantly reduced in sheep treated with the senicapoc, when compared to vehicle-treated controls. These parameters were not significantly suppressed with pirfenidone treatment. Senicapoc treatment attenuated vascular remodelling through inhibition of capillary endothelial cell proliferation and VEGF expression. These findings suggest a potential new mode of action for the novel drug senicapoc which may contribute to its efficacy in combatting pulmonary fibrosis.