Published in

Hans Publishers, Astronomy & Astrophysics, (627), p. A76, 2019

DOI: 10.1051/0004-6361/201935515

Links

Tools

Export citation

Search in Google Scholar

Quasilinear approach of the cumulative whistler instability in fast solar wind: Constraints of electron temperature anisotropy

Journal article published in 2019 by S. M. Shaaban ORCID, M. Lazar ORCID, P. H. Yoon, S. Poedts ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Context. Solar outflows are a considerable source of free energy that accumulates in multiple forms such as beaming (or drifting) components, or temperature anisotropies, or both. However, kinetic anisotropies of plasma particles do not grow indefinitely and particle-particle collisions are not efficient enough to explain the observed limits of these anisotropies. Instead, self-generated wave instabilities can efficiently act to constrain kinetic anisotropies, but the existing approaches are simplified and do not provide satisfactory explanations. Thus, small deviations from isotropy shown by the electron temperature (T) in fast solar winds are not explained yet. Aims. This paper provides an advanced quasilinear description of the whistler instability driven by the anisotropic electrons in conditions typical for the fast solar winds. The enhanced whistler-like fluctuations may constrain the upper limits of temperature anisotropy A ≡ T/T > 1, where ⊥, ∥ are defined with respect to the magnetic field direction. Methods. We studied self-generated whistler instabilities, cumulatively driven by the temperature anisotropy and the relative (counter)drift of electron populations, for example, core and halo electrons. Recent studies have shown that quasi-stable states are not bounded by linear instability thresholds but an extended quasilinear approach is necessary to describe these quasi-stable states in this case. Results. Marginal conditions of stability are obtained from a quasilinear theory of cumulative whistler instability and approach the quasi-stable states of electron populations reported by the observations. The instability saturation is determined by the relaxation of both the temperature anisotropy and relative drift of electron populations.