Published in

Oxford University Press (OUP), Journal of Crohn's and Colitis, 1(14), p. 96-109, 2019

DOI: 10.1093/ecco-jcc/jjz109

Links

Tools

Export citation

Search in Google Scholar

Deregulation of Long Intergenic Non-coding RNAs in CD4+ T Cells of Lamina Propria in Crohn’s Disease Through Transcriptome Profiling

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background The aetiology of Crohn’s disease [CD] involves immune dysregulation in a genetically susceptible individual. Genome-wide association studies [GWAS] have identified 200 loci associated with CD, ulcerative colitis, or both, most of which fall within non-coding DNA regions. Long non-coding RNAs [lncRNAs] regulate gene expression by diverse mechanisms and have been associated with disease activity in inflammatory bowel disease. However, disease-associated lncRNAs have not been characterised in pathogenic immune cell populations. Methods Terminal ileal samples were obtained from 22 CD patients and 13 controls. RNA from lamina propria CD4+ T cells was sequenced and long intergenic non-coding RNAs [lincRNAs] were detected. Overall expression patterns, differential expression [DE], and pathway and gene enrichment analyses were performed. Knockdown of novel lincRNAs XLOC_000261 and XLOC_000014 was performed. Expression of Th1 or Th17-associated transcription factors, T-bet and RORγt, respectively, was assessed by flow cytometry. Results A total of 6402 lincRNAs were expressed, 960 of which were novel. Unsupervised clustering and principal component analysis showed that the lincRNA expression discriminated patients from controls. A total of 1792 lincRNAs were DE, and 295 [79 novel; 216 known] mapped to 267 of 5727 DE protein-coding genes. The novel lincRNAs were enriched in inflammatory and Notch signalling pathways [p <0.05]. Furthermore, DE lincRNAs in CD patients were more frequently found in DNA regions with known inflammatory bowel disease [IBD]-associated loci. The novel lincRNA XLOC_000261 negatively regulated RORγt expression in Th17 cells. Conclusions We describe a novel set of DE lincRNAs in CD-associated CD4+ cells and demonstrate that novel lincRNA XLOC_000261 appears to negatively regulate RORγt protein expression in Th17 cells.