Published in

Oxford University Press (OUP), Rheumatology, 12(58), p. 2315-2324, 2019

DOI: 10.1093/rheumatology/kez212

Links

Tools

Export citation

Search in Google Scholar

The rs75862629 minor allele in the endoplasmic reticulum aminopeptidases intergenic region affects human leucocyte antigen B27 expression and protects from ankylosing spondylitis in Sardinia

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Objectives HLA-B27 and the endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2 genes are predisposing factors for AS. A single nucleotide polymorphism (SNP) in the ERAP2 promoter (rs75862629) coordinates the transcription of both ERAP genes. We investigated whether this SNP associates with AS and whether it affects the expression of the two major HLA-B27 alleles present in Sardinia, the AS-associated B*2705 and the non-AS-associated B*2709. Methods Four SNPs in the ERAP region were genotyped in HLA-B*2705-positive patients with AS (n = 145), B27-positive healthy subjects (n = 126) and B27-negative controls (n = 250) and the allele and haplotype frequencies were derived. The expression of ERAP1 and ERAP2 mRNAs in 36 HLA-B27-positive B lymphoblastoid cell lines was measured by quantitative PCR. An electrophoretic mobility shift assay was performed to search for a nuclear factor binding the DNA sequence encompassing rs75862629. The expression of HLA-B27 molecules related to the SNP at rs75862629 was determined by flow cytometry. Results The minor allele G at rs75862629 was found significantly increased in B27 healthy individuals, both B*2705 and B*2709, compared with B*2705-positive patients with AS and B27-negative controls. The electrophoretic mobility shift assay indicated the lack of binding of a transcription factor as the cause of the observed reduction in the ERAP2 concomitant with a higher ERAP1 expression. Of note, this occurs with a different cell surface expression of the HLA-B*2705 and HLA-B*2709 molecules. Conclusion SNP rs75862629, by modulating simultaneously the expression of ERAP1 and ERAP2, provides protection from AS in HLA-B27-positive subjects in Sardinia. This has a functional impact on HLA-B27 expression and likely on disease onset.