Dissemin is shutting down on January 1st, 2025

Published in

Future Medicine, Nanomedicine, 1(15), p. 23-39, 2020

DOI: 10.2217/nnm-2019-0166

Links

Tools

Export citation

Search in Google Scholar

The effect of immobilized antioxidant enzymes on the oxidative stress in UV-irradiated rat skin

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aim: Superoxide dismutase (SOD) and catalase (CAT) immobilized on gold nanoparticles (AuNP) and silver nanoparticles (AgNP) nanoparticles were used to reduce UV radiation-induced oxidative stress in rat skin. Materials & methods: The antioxidant influence of the enzymes was investigated on level of malondialdehyde, 8-hydroksy-2′deoksyguanozine, myeloperoxidase, total antioxidant capacity, SOD2 and CAT activity and expression, and glutathione and glutathione peroxidase activity. Results: The application of immobilized SOD and CAT on UV-irradiated skin reduced malondialdehyde and 8-hydroksy-2′deoksyguanozine levels also SOD and CAT activity and expression increased. The tested enzymes influence glutathione peroxidase activity and level of total antioxidant capacity and glutathione. Conclusion: Immobilized enzymes increased the antioxidative potential of skin following UV irradiation.