Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 4(490), p. 5366-5374, 2019

DOI: 10.1093/mnras/stz2900

Links

Tools

Export citation

Search in Google Scholar

GRB 171010a/Sn 2017htp: A GRB-SN at Z = 0.33

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT The number of supernovae known to be connected with long-duration gamma-ray bursts (GRBs) is increasing and the link between these events is no longer exclusively found at low redshift (z ≲ 0.3) but is well established also at larger distances. We present a new case of such a liaison at z = 0.33 between GRB 171010A and SN 2017htp. It is the second closest GRB with an associated supernova of only three events detected by Fermi-LAT. The supernova is one of the few higher redshift cases where spectroscopic observations were possible and shows spectral similarities with the well-studied SN 1998bw, having produced a similar Ni mass ($M_{\rm Ni}=0.33± 0.02 ~\rm {M_{⊙ }}$) with slightly lower ejected mass ($M_{\rm ej}=4.1± 0.7~\rm {M_{⊙ }}$) and kinetic energy ($E_{\rm K} = 8.1± 2.5 \times 10^{51} ~\rm {erg}$). The host-galaxy is bigger in size than typical GRB host galaxies, but the analysis of the region hosting the GRB revealed spectral properties typically observed in GRB hosts and showed that the progenitor of this event was located in a very bright H ii region of its face-on host galaxy, at a projected distance of ∼ 10 kpc from its galactic centre. The star-formation rate (SFRGRB ∼ 0.2 M⊙ yr−1) and metallicity (12 + log(O/H) ∼8.15 ± 0.10) of the GRB star-forming region are consistent with those of the host galaxies of previously studied GRB–SN systems.