American Meteorological Society, Journal of the Atmospheric Sciences, 12(76), p. 3831-3846, 2019
Full text: Download
Abstract Here the theory of global nonhydrostatic normal modes has been further developed with the analysis of both linear and weakly nonlinear energetics of inertia–acoustic (IA) and inertia–gravity (IG) modes. These energetics are analyzed in the context of a shallow global nonhydrostatic model governing finite-amplitude perturbations around a resting, hydrostatic, and isothermal background state. For the linear case, the energy as a function of the zonal wavenumber of the IA and IG modes is analyzed, and the nonhydrostatic effect of vertical acceleration on the IG waves is highlighted. For the nonlinear energetics analysis, the reduced equations of a single resonant wave triad interaction are obtained by using a pseudoenergy orthogonality relation. Integration of the triad equations for a resonance involving a short harmonic of an IG wave, a planetary-scale IA mode, and a short IA wave mode shows that an IG mode can allow two IA modes to exchange energy in specific resonant triads. These wave interactions can yield significant modulations in the dynamical fields associated with the physical-space solution with periods varying from a daily time scale to almost a month long.