Published in

Anais do Simpósio Brasileiro de Sistemas de Informação (SBSI), 2017

DOI: 10.5753/sbsi.2017.6022

Links

Tools

Export citation

Search in Google Scholar

Deep Regressor Stacking for Air Ticket Prices Prediction

Proceedings article published in 2017 by Everton Santana ORCID, Saulo Mastelini, Sylvio Barbon, Sylvio Jr.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Purchasing air tickets by the lowest price is a challenging task for consumers since the prices might fluctuate over time influenced by several factors. In order to support users’ decision, some price prediction techniques have been developed. Considering that this problem could be solved by multi-target approaches from Machine Learning, this work proposes a novel method looking forward to obtaining an improvement in air ticket prices prediction. The method, called Deep Regressor Stacking (DRS), applies a naive deep learning methodology to reach more accurate predictions. To evaluate the contribution of the DRS, it was compared with the competence of the single-target regression and two state-of-the-art multi-target regressions (Stacked Single Target and Ensemble of Regressor Chains). All four approaches were performed based on Random Forest and Support Vector Machine algorithms over two real-life airfares datasets. After results, it was concluded DRS outperformed the other three methods, being the most indicated (most predictive) to assist air passengers in the prediction of flight ticket price.