Dissemin is shutting down on January 1st, 2025

Published in

American Meteorological Society, Journal of Climate, 11(32), p. 3389-3407, 2019

DOI: 10.1175/jcli-d-17-0615.1

Links

Tools

Export citation

Search in Google Scholar

Effect of Summer Arctic Sea Ice on the Reverse August Precipitation Anomaly in Eastern China between 1998 and 2016

Journal article published in 2019 by Haibo Shen, Shengping He ORCID, Huijun Wang
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractThe 1997/98 and 2015/16 El Niño episodes are regarded as two super–El Niño events and have exerted profound influence on eastern China summer rainfall, as expected. However, on the subseasonal time scale, summer rainfall in these two years shows dramatic diversity, although the characteristics of the two super–El Niños are similar. This study reveals that the rainfall increased (decreased) over central China (~30°–35°N) and decreased (increased) over southeastern China (south of ~25°N) in August 1998 (2016), exhibiting a dipole anomaly pattern over eastern China. Observational analyses indicate that, associated with negative interannual variability of the sea ice area (SIA) over the Barents–Kara Seas (BKS) in July and August, August rainfall shows significantly negative (positive) anomalies over central (southeastern) China. Further analyses reveal that negative SIA anomalies in the BKS induce significantly anomalous upper-level divergence over the polar region, accompanied with anomalous upper-level convergence over the Caspian Sea. The advection of vorticity by these anomalous divergent and convergent flows indicates notable Rossby wave sources near the Caspian Sea, yielding a Rossby wave train propagating eastward to East Asia that causes positive barotropic and baroclinic energy convection near the exit region of the Asian jet stream. The accumulation of perturbation energy in East Asia stimulates the formation of the Pacific–Japan teleconnection, which is favorable for the dipole rainfall anomaly pattern over eastern China. Thus, the positive and negative SIA anomaly over the BKS in 1998 and 2016 may contribute to the reverse August precipitation anomaly in eastern China.