Published in

SAGE Publications, Journal of Intelligent Material Systems and Structures, 1(31), p. 3-16, 2019

DOI: 10.1177/1045389x19880613

Links

Tools

Export citation

Search in Google Scholar

Flexural and toughness properties of NiTi shape memory alloy, polypropylene and steel fibres in self-compacting concrete

Journal article published in 2019 by Farhad Aslani ORCID, Yinong Liu ORCID, Yu Wang
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Self-compacting concrete presents good workability to fill complicated forms without mechanical vibrations. This concrete is often reinforced with fibres to improve the strength and toughness. This study investigated the use of nickel -titanium (NiTi) shape memory alloy fibres in comparison with polypropylene and steel fibres in self-compacting concrete. The performances of the fresh fibre–reinforced self-compacting concrete are explored by slump flow and J-ring experiments. Meanwhile, the static and cyclic flexural tests are conducted to estimate the bending resistance strength performance, residual deformation and recovering capacity of shape memory alloy, polypropylene and steel fibre–reinforced self-compacting concrete. Moreover, the flexural toughness of the shape memory alloy, polypropylene and steel fibre–reinforced self-compacting concrete is calculated using four different codes. The shape memory alloy fibre–reinforced self-compacting concrete with 0.75% volume fraction presents the largest flexural strength, re-centering ability and toughness in comparison with polypropylene and steel fibre–reinforced self-compacting concretes. The experimental results demonstrated the beneficial influence of the shape memory and superelastic properties of NiTi in postponing initial crack formation and restricting the crack widths.