Published in

Journal of Experimental Agriculture International, p. 1-8, 2019

DOI: 10.9734/jeai/2019/v35i630220

Links

Tools

Export citation

Search in Google Scholar

Different Light Radiation Intensities on Cotton: A Physiological Approach

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The luminosity and the temperature are factors that act directly in the photosynthetic process, where an elevation of the luminous intensity can cause a reduction of the assimilation of carbon, which consequently lowers the development of the cotton. The objective of this work was to assess the response of physiological parameters of cotton when subjected to different artificial light intensities. Two varieties of cotton IMA5801B2RF and IACRDN, were interacting with five artificial light intensities: 0 (control); 500; 1000; 1500 and 2000 μmol m−2 s−1 of photosynthetically active radiation provided by LED bulbs. The experiment was set in a randomized complete block design using a 2x5 factorial scheme. The variables measured were the rate of CO2 assimilation, transpiration, stomatal conductance, inner CO2 concentration in the substomatic chamber, and efficient use of water (for which a portable device of gas exchange was used). The cotton varieties responded positively to different luminous intensities until reaching the point of maximum saturation between 1400 and 1600 µmol m-1 s-1 of light, which provided a better rate of CO2 assimilation, concentration of CO2 in the substomatic chamber, and efficient use of water. Leaf transpiration and stomatal conductance showed a positive linear response with increasing light intensity. The ideal luminous intensity for the use of Infra-Red Gas Analyzer - IRGA was 1500 µmol m-1 s-1 for the tested cotton varieties.