Published in

Hindawi, Advances in Polymer Technology, (2019), p. 1-15, 2019

DOI: 10.1155/2019/4294306

Links

Tools

Export citation

Search in Google Scholar

Two-Dimensional Nanomaterials-Based Polymer Composites: Fabrication and Energy Storage Applications

Journal article published in 2019 by Wei Liu, Bakhtar Ullah, Ching Kuo, Xingke Cai ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Polymers have been widely used for their low density, low cost, corrosion resistance, easy design, and processing. The addition of nanomaterials into polymer matrices has been studied for a long history due to their enhancement on properties of polymers, such as the electrical conductivity, thermal conductivity, corrosion resistance, and wear resistance. Two-dimensional materials, a new class of nanomaterials, have been intensively studied as a filler for polymer composites in recent years, which can significantly enhance the performance at even extremely small loading. In this review, firstly, the preparing and modifying method of 2D materials, such as graphene, graphene oxide, and hexagonal boron nitride, as a filler for polymer composites are organized. The related dispersion methods of 2D materials in the polymers, surface treatments of 2D materials, interface bonding between 2D materials and polymers are discussed alongside. Secondly, the applications of 2D materials/polymer composites for energy storage in lithium ion battery separators and supercapacitors are summarized. Finally, we have concluded the challenges in preparing 2D materials/polymer composites, and future perspectives for using this class of new composites have also been discussed.