Published in

Österreichischer Apothekerverlag, Scientia Pharmaceutica, 1(88), p. 1, 2019

DOI: 10.3390/scipharm88010001

Links

Tools

Export citation

Search in Google Scholar

Crystal Habits and Biological Properties of N-(4-Trifluoromethylphenyl)-4-Hydroxy-2,2-Dioxo-1H-2λ6,1-Benzothiazine-3-Carboxamide

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In order to study polymorphic modifications of N-(4-trifluoromethylphenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide, which is of interest as a promising analgesic, its three colorless crystal forms with different habitus have been obtained: sticks of ethyl acetate, plates of meta-xylene and blocks of ortho-xylene. However, the X-ray diffraction analysis has shown that all the forms studied have the identical molecular and crystal structure in spite of such significant differences in appearance. Moreover, pharmacological tests have revealed significant differences in the analgesic activity in these samples (a total of five experimental models were used: “acetic-acid-induced writhing”, “hot plate”, “thermal irritation of the tail tip” (tail-flick), “tail electric stimulation” and “neuropathic pain”), acute toxicity and the ability to cause gastric damage. As a result, only the plate crystal form of N-(4-trifluoromethylphenyl)-4-hydroxy-2,2-dioxo-1H-2λ6,1-benzothiazine-3-carboxamide is recommended for further studies. Thus, it has been proven that the habitus of crystals is an important characteristic of the drug substance and is able to have a noticeable effect on its biological properties. Changes in habitus should be considered as a guide to the mandatory verification of at least the basic pharmacological parameters of the new form regardless of whether the molecular and crystal structure changes.