Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Nanomaterials, 12(9), p. 1727, 2019

DOI: 10.3390/nano9121727

Links

Tools

Export citation

Search in Google Scholar

PET and Active Coating Based on a LDH Nanofiller Hosting p-Hydroxybenzoate and Food-Grade Zeolites: Evaluation of Antimicrobial Activity of Packaging and Shelf Life of Red Meat

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Layered double hydroxide (LDH) nanofillers were considered as hosts of p-hydroxybenzoate as an antimicrobial molecule for active coating. A food grade resin with LDH-p-hydroxybenzoate and two different types of food grade zeolites was used to prepare active coatings for Polyethylene terephthalate (PET) trays. The release kinetics of the active molecule were followed using UV spectrophotometry and the experimental results were analyzed with the Gallagher–Corrigan model. The thermal properties of the coating mixtures and the PET coating were analyzed and found to be dependent on the coating’s composition. On the basis of CO2 transmission rate and off-odors tests, the best coating composition was selected. Global migration in ethanol (10% v/v), acetic acid (3% w/v), and vegetable oil, and specific migration of p-hydroxybenzoic acid revealed the suitability of the material for food contact. Antimicrobial tests on the packaging demonstrated a good inhibition against Salmonella spp. and Campylobacter jejuni. Red meat was packed into the selected active materials and results were compared to uncoated PET packaging. Color tests (browning of the meat) and analysis of Enterobacteriaceae spp. and total viable count evolution up to 10 days of storage demonstrated the capability of the considered active packaging in prolonging the shelf life of red meat.