Published in

IOP Publishing, Environmental Research Letters, 12(14), p. 125016, 2019

DOI: 10.1088/1748-9326/ab5da9

Links

Tools

Export citation

Search in Google Scholar

Inter-product biases in global precipitation extremes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Biases in climatological and extreme precipitation estimates are assessed for 11 global observational datasets constructed with merged satellite measurements and/or rain gauge networks. Specifically, the biases in extreme precipitation are contrasted with mean-state biases. Extreme precipitation is defined by a 99th percentile threshold (R99p) on a daily, 1° × 1° grid for 50 °S–50 °N. The spatial pattern of extreme precipitation lacks distinct features such as the ITCZ that is evident in the global climatological map, and the climatology and extremes share little in common in terms of the spatial characteristics of inter-product biases. The time series also exhibit a larger spread in the extremes than in the climatology. Further, when analysed from 2001 to 2013, they show relatively consistent decadal stability in the climatology over ocean while the dispersion is larger for the extremes over ocean. This contrast is not observed over land. Overall, the results suggest that the inter-product biases apparent in the climatology are a poor predictor of the extreme-precipitation biases even in a qualitative sense.