Published in

MDPI, Marine Drugs, 12(17), p. 671, 2019

DOI: 10.3390/md17120671

Links

Tools

Export citation

Search in Google Scholar

Marine Bacteria from Rocas Atoll as a Rich Source of Pharmacologically Active Compounds

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Rocas Atoll is a unique environment in the equatorial Atlantic Ocean, hosting a large number of endemic species, however, studies on the chemical diversity emerging from this biota are rather scarce. Therefore, the present work aims to assess the metabolomic diversity and pharmacological potential of the microbiota from Rocas Atoll. A total of 76 bacteria were isolated and cultured in liquid culture media to obtain crude extracts. About one third (34%) of these extracts were recognized as cytotoxic against human colon adenocarcinoma HCT-116 cell line. 16S rRNA gene sequencing analyses revealed that the bacteria producing cytotoxic extracts were mainly from the Actinobacteria phylum, including Streptomyces, Salinispora, Nocardiopsis, and Brevibacterium genera, and in a smaller proportion from Firmicutes phylum (Bacillus). The search in the spectral library in GNPS (Global Natural Products Social Molecular Networking) unveiled a high chemodiversity being produced by these bacteria, including rifamycins, antimycins, desferrioxamines, ferrioxamines, surfactins, surugamides, staurosporines, and saliniketals, along with several unidentified compounds. Using an original approach, molecular networking successfully highlighted groups of compounds responsible for the cytotoxicity of crude extracts. Application of DEREPLICATOR+ (GNPS) allowed the annotation of macrolide novonestimycin derivatives as the cytotoxic compounds existing in the extracts produced by Streptomyces BRB-298 and BRB-302. Overall, these results highlighted the pharmacological potential of bacteria from this singular atoll.