Published in

MDPI, Metals, 12(9), p. 1270, 2019

DOI: 10.3390/met9121270

Links

Tools

Export citation

Search in Google Scholar

Investigation on Ti-6Al-4V Microstructure Evolution in Selective Laser Melting

Journal article published in 2019 by Ling Ding, Zhonggang Sun, Zulei Liang, Feng Li, Guanglong Xu ORCID, Hui Chang
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Selective laser melting (SLM) is an advanced additive manufacturing technique that can produce complex and accurate metal samples. Since the process performs local high heat input during a very short interaction time, the physical parameters in the solidification are difficult to measure experimentally. In this work, the microstructure evolution of Ti-6Al-4V alloy in additive manufacturing was studied. With the increase of scanning speed, the cooling rate and the temperature gradient of molten pool position increased, which was attributed to the gradual decrease of energy density. The phase-field simulation resulted in the overall microstructure morphology of columnar crystals owing to the very large temperature gradient and cooling rate obtained from the temperature field. Microsegregation was observed during dendritic formation, and the solute was enriched in the liquid phase near the dendritic tip and between the dendritic arms due to the lower equilibrium distribution coefficient. The scanning speed had an effect on the dendrite spacing.