Published in

CSIRO Publishing, Animal Production Science, 1(60), p. 164, 2020

DOI: 10.1071/an18532

Links

Tools

Export citation

Search in Google Scholar

Predicting milk fatty acids and energy balance of dairy cows in Australia using milk mid-infrared spectroscopy

Journal article published in 2020 by P. N. Ho ORCID, L. C. Marett ORCID, W. J. Wales, M. Axford, E. M. Oakes, J. E. Pryce
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mid-infrared spectroscopy (MIRS) is traditionally used for analysing milk fat, protein and lactose concentrations in dairy production, but there is growing interest in using it to predict difficult, or expensive-to-measure, phenotypes on a large scale. The resulting prediction equations can be applied to MIRS data from commercial herd-testing, to facilitate management and feeding decisions, or for genomic selection purposes. We investigated the ability of MIRS of milk samples to predict milk fatty acids (FAs) and energy balance (EB) of dairy cows in Australia. Data from 240 Holstein lactating cows that were part of two 32-day experiments, were used. Milk FAs were measured twice during the experimental period. Prediction models were developed using partial least-square regression with a 10-fold cross-validation. Measures of prediction accuracy included the coefficient of determination (R2cv) and root mean-square error. Milk FAs with a chain length of ≤16 were accurately predicted (0.89 ≤ R2cv ≤ 0.95), while prediction accuracy for FAs with a chain length of ≥17 was slightly lower (0.72 ≤ R2cv ≤ 0.82). The accuracy of the model prediction was moderate for EB, with the value of R2cv of 0.48. In conclusion, the ability of MIRS to predict milk FAs was high, while EB was moderately predicted. A larger dataset is needed to improve the accuracy and the robustness of the prediction models.