Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 25(110), p. 12682-12688, 2006

DOI: 10.1021/jp0604903

Links

Tools

Export citation

Search in Google Scholar

Dielectric Response of Imidazolium-Based Room-Temperature Ionic Liquids

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have used microwave dielectric relaxation spectroscopy to study the picosecond dynamics of five low-viscosity, highly conductive room temperature ionic liquids based on 1-alkyl-3-methylimidazolium cations paired with the bis((trifluoromethyl)sulfonyl)imide anion. Up to 20 GHz the dielectric response is bimodal. The longest relaxation component at the time scale of several 100 ps reveals strongly nonexponential dynamics and correlates with the viscosity in a manner consistent with hydrodynamic predictions for the diffusive reorientation of dipolar ions. Methyl substitution at the C2 position destroys this correlation. The time constants of the weak second process at the 20 ps time scale are practically the same for each salt. This intermediate process seems to correlate with similar modes in optical Kerr effect spectra, but its physical origin is unclear. The missing high-frequency portion of the spectra indicates relaxation beyond the upper cutoff frequency of 20 GHz, presumably due to subpicosecond translational and librational displacements of ions in the cage of their counterions. There is no evidence for orientational relaxation of long-lived ion pairs.