Published in

Beilstein-Institut, Beilstein Journal of Organic Chemistry, (15), p. 1545-1551, 2019

DOI: 10.3762/bjoc.15.157

Links

Tools

Export citation

Search in Google Scholar

Molecular basis for the plasticity of aromatic prenyltransferases in hapalindole biosynthesis

Journal article published in 2019 by Takayoshi Awakawa ORCID, Ikuro Abe ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Orange circle
Preprint: archiving restricted
Orange circle
Postprint: archiving restricted
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aromatic prenyltransferases (PTases) are enzymes that catalyze Friedel–Crafts reactions between aromatic compounds and isoprenoid diphosphates. In hapalindole biosynthesis, the aromatic PTases AmbP1 and AmbP3 exhibit surprisingly plastic selectivities. AmbP1 not only transfers the geranyl group on the C-3 of cis-indolylvinyl isonitrile, but also on the C-2, which is supressed in the presence of Mg2+ ions. AmbP3 transfers the dimethylallyl group on C-2 of hapalindole U in the reverse manner, but on C-2 of its C-10 stereoisomer in the normal manner. This review highlights the molecular bases of the AmbP1 and AmbP3 functions, elucidated through their X-ray crystal structures. The knowledge presented here will contribute to the understanding of aromatic PTase reactions and will enhance their uses as biocatalysts.