Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Environmental Research Letters, 3(15), p. 034009, 2020

DOI: 10.1088/1748-9326/ab65cc

Links

Tools

Export citation

Search in Google Scholar

Radiance-based NIRv as a proxy for GPP of corn and soybean

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Substantial uncertainty exists in daily and sub-daily gross primary production (GPP) estimation, which dampens accurate monitoring of the global carbon cycle. Here we find that near-infrared radiance of vegetation (NIRv,Rad), defined as the product of observed NIR radiance and normalized difference vegetation index, can accurately estimate corn and soybean GPP at daily and half-hourly time scales, benchmarked with multi-year tower-based GPP at three sites with different environmental and irrigation conditions. Overall, NIRv,Rad explains 84% and 78% variations of half-hourly GPP for corn and soybean, respectively, outperforming NIR reflectance of vegetation (NIRv,Ref), enhanced vegetation index (EVI), and far-red solar-induced fluorescence (SIF760). The strong linear relationship between NIRv,Rad and absorbed photosynthetically active radiation by green leaves (APARgreen), and that between APARgreen and GPP, explain the good NIRv,Rad-GPP relationship. The NIRv,Rad-GPP relationship is robust and consistent across sites. The scalability and simplicity of NIRv,Rad indicate a great potential to estimate daily or sub-daily GPP from high-resolution and/or long-term satellite remote sensing data.