Published in

Cambridge University Press, Experimental Agriculture, 3(56), p. 331-346, 2019

DOI: 10.1017/s0014479719000395

Links

Tools

Export citation

Search in Google Scholar

Effects of establishment method and water management on yield and water productivity of tropical lowland rice

Journal article published in 2019 by Hayat Ullah, Suman Giri, Ahmed Attia ORCID, Avishek Datta ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractModification of the existing cropping practice is needed to maintain rice (Oryza sativa L.) productivity and reduce irrigation water input. A 2-year field experiment was conducted during the dry rice growing season of 2016 and 2017 at the Asian Institute of Technology, Pathum Thani, Thailand, to investigate the effects of establishment method and irrigation level on growth, yield, and water productivity of irrigated lowland rice. The treatments consisted of two Thai rice cultivars (Pathumthani 1 and RD57), two establishment methods (dry direct seeding [DDS] and transplanting [TP]), and three irrigation levels (continuous flooding [CF], 15 cm threshold water level below the soil surface for irrigation [AWD15], and 30 cm threshold water level below the soil surface for irrigation [AWD30]). Overall, the performance of RD57 was better than Pathumthani 1 under DDS with 50% higher grain yield and 90% higher water productivity at AWD15. RD57 also had higher shoot dry matter, number of tiller m–2, and number of panicle m–2 across establishment methods and irrigation levels. Grain yield and water productivity of RD57 were similar under two establishment methods across irrigation levels, whereas the performance of TP was better than DDS for Pathumthani 1 irrespective of irrigation levels. The highest grain yield and water productivity of Pathumthani 1 was observed at AWD15 under TP and that of RD57 under both establishment methods at the same irrigation level. AWD15 saved 26 and 32% irrigation water under TP and DDS, respectively, compared with TP-CF treatment combination. AWD15 irrigation level could be recommended for greater water productivity without compromising yield when Pathumthani 1 is cultivated through TP and RD57 is cultivated through either DDS or TP. Although water-saving potential was higher compared with CF, AWD30 is not recommended for irrigated lowland rice cultivation due to significant yield reduction.