Published in

Nature Research, Communications Chemistry, 1(2), 2019

DOI: 10.1038/s42004-019-0235-z

Links

Tools

Export citation

Search in Google Scholar

Photocatalytic proximity labelling of MCL-1 by a BH3 ligand

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractLigand-directed protein labelling allows the introduction of diverse chemical functionalities onto proteins without the need for genetically encoded tags. Here we report a method for the rapid labelling of a protein using a ruthenium-bipyridyl (Ru(II)(bpy)3)-modified peptide designed to mimic an interacting BH3 ligand within a BCL-2 family protein-protein interactions. Using sub-stoichiometric quantities of (Ru(II)(bpy)3)-modified NOXA-B and irradiation with visible light for 1 min, the anti-apoptotic protein MCL-1 can be photolabelled with a variety of functional tags. In contrast with previous reports on Ru(II)(bpy)3-mediated photolabelling, tandem mass spectrometry experiments reveal that the labelling site is a cysteine residue of MCL-1. MCL-1 can be labelled selectively in mixtures with other proteins, including the structurally related BCL-2 member, BCL-xL. These results demonstrate that proximity-induced photolabelling is applicable to interfaces that mediate protein-protein interactions, and pave the way towards future use of ligand-directed proximity labelling for dynamic analysis of the interactome of BCL-2 family proteins.