Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 12(116), p. 5613-5622, 2019

DOI: 10.1073/pnas.1815994116

Links

Tools

Export citation

Search in Google Scholar

Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Horizontal gene transfer (HGT) is the transfer of genetic information between genomes by a route other than from parent to offspring. Of particular interest here are the transfers of transporter-encoding genes, which can allow an organism to utilize a new metabolite, often via the acquisition of a single foreign gene. Here we have identified a range of HGT events of transporter-encoding genes, characterized the substrate preferences for each HGT encoded protein, and demonstrated that the gain of one of these HGTs can provide yeast with a distinct competitive advantage in a given environment. This has wide implications for understanding how acquisition of single genes by HGT can drastically influence the environments fungi can colonize.