Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 3(116), p. 753-758, 2019

DOI: 10.1073/pnas.1816265116

Links

Tools

Export citation

Search in Google Scholar

Nanoscale infrared imaging analysis of carbonaceous chondrites to understand organic-mineral interactions during aqueous alteration

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Spatial relationships between organic matter and minerals are necessary for understanding the formation and evolution of organic matter during aqueous and thermal alteration in their parent bodies, as well as preaccretional history. Infrared spectroscopy is a powerful tool to analyze the molecular structures of organic matter and identification of minerals. However, its spatial resolution is limited due to the diffraction limit. Recently, the atomic force microscopy (AFM) based IR nanospectroscopy was developed and applied in various scientific fields to overcome the diffraction limit of IR. We applied the AFM-based IR nanospectroscopy to carbonaceous chondrites and studied organic-mineral associations at the ∼30 nm spatial resolution.