Published in

American Society of Hematology, Blood Advances, 26(1), p. 2643-2654, 2017

DOI: 10.1182/bloodadvances.2017012534

Links

Tools

Export citation

Search in Google Scholar

Checkpoint blockade in Hodgkin and non-Hodgkin lymphoma

Journal article published in 2017 by Reid W. Merryman ORCID, Philippe Armand, Kyle T. Wright, Scott J. Rodig
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractClassical Hodgkin lymphoma (cHL) is characterized by nearly universal genetic alterations in 9p24.1, resulting in constitutive expression of PD-1 ligands. This likely underlies the unique sensitivity of cHL to PD-1 blockade, with response rates of ∼70% in relapsed/refractory disease. There are now numerous clinical trials testing PD-1 inhibitors in earlier stages of treatment and in combination with many other therapies. In general, non-Hodgkin lymphomas (NHLs) do not display a high frequency of 9p24.1 alterations and do not share cHL’s vulnerability to PD-1 blockade. However, a few entities have genetic or immunologic features that may predict sensitivity to immune checkpoint blockade. These include primary mediastinal B cell lymphoma, primary central nervous system lymphoma, and primary testicular lymphoma, which harbor frequent alterations in 9p24.1, as well as Epstein Barr virus (EBV)–infected lymphomas, where EBV infection leads to increased PD-L1 expression. Although these subtypes may be specifically vulnerable to PD-1 blockade, the majority of NHLs appear to be minimally sensitive to PD-1 blockade monotherapy. Current investigations in NHL are therefore focusing on targeting other checkpoints or studying PD-1–based combination therapy. Looking forward, additional insight into the most common mechanisms of resistance to immune checkpoint inhibitors will be important to guide rational clinical trial design. In this review, we describe the biological basis for checkpoint blockade in cHL and NHL and summarize the clinical data generated to date. Guided by our rapidly evolving understanding of the pathobiology of various lymphoma subtypes, we are hopeful that the role of checkpoint inhibitors in lymphoma treatment will continue to grow.