Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, npj Computational Materials, 1(4), 2018

DOI: 10.1038/s41524-018-0127-2

Links

Tools

Export citation

Search in Google Scholar

Precision and efficiency in solid-state pseudopotential calculations

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractDespite the enormous success and popularity of density-functional theory, systematic verification and validation studies are still limited in number and scope. Here, we propose a protocol to test publicly available pseudopotential libraries, based on several independent criteria including verification against all-electron equations of state and plane-wave convergence tests for phonon frequencies, band structure, cohesive energy and pressure. Adopting these criteria we obtain curated pseudopotential libraries (named SSSP or standard solid-state pseudopotential libraries), that we target for high-throughput materials screening (“SSSP efficiency”) and high-precision materials modelling (“SSSP precision”). This latter scores highest among open-source pseudopotential libraries available in the Δ-factor test of equations of states of elemental solids.