Published in

Oxford University Press (OUP), Biological Journal of the Linnean Society, 4(128), p. 987-993, 2019

DOI: 10.1093/biolinnean/blz116

Links

Tools

Export citation

Search in Google Scholar

Ventral scale width in snakes depends on habitat but not hunting strategy

Journal article published in 2019 by Stanisław Bury ORCID, Bartosz Borczyk ORCID, Tomasz Skawiński ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Environment and lifestyle induce substantial variation in the mechanisms of locomotion in vertebrates. A spectrum of adaptations related to locomotion is also present in limbless taxa, especially snakes, which have radiated successfully into a wide range of habitats. The majority of studies concerning habitat-driven variation in locomotor mechanisms of snakes have focused on the musculoskeletal system. Far less recognized is the variation in the morphology of ventral scales, which are another pivotal component of the locomotor system in snakes. Here, we investigated patterns of interspecific variation in the width of ventral scales in terms of lifestyle (hunting mode) and habitat occupied in 55 species of snakes belonging to eight families. We found that increasing terrestriality was associated with enlarged ventral scales. Reduction instead of maintenance of the width of ventral scales was observed in aquatic species, suggesting that wide ventral scales set constraints on aquatic locomotion. In terrestrial species, no significant differences were observed in terms of arboreality or hunting mode, which suggests overall optimization in the size of ventral scales towards terrestrial locomotion. Association between the width of ventral scales and locomotion can result in a habitat-dependent costs of abnormalities in ventral scale morphology, commonly observed in snakes.