Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 28(116), p. 13964-13969, 2019

DOI: 10.1073/pnas.1901471116

Links

Tools

Export citation

Search in Google Scholar

Four amino acids define the CO2binding pocket of enoyl-CoA carboxylases/reductases

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Carboxylases are biocatalysts that capture and convert carbon dioxide (CO 2 ) under mild conditions and atmospheric concentrations at a scale of more than 400 Gt annually. However, how these enzymes bind and control the gaseous CO 2 molecule during catalysis is only poorly understood. One of the most efficient classes of carboxylating enzymes are enoyl-CoA carboxylases/reductases (Ecrs), which outcompete the plant enzyme RuBisCO in catalytic efficiency and fidelity by more than an order of magnitude. Here we investigated the interactions of CO 2 within the active site of Ecr from Kitasatospora setae . Combining experimental biochemistry, protein crystallography, and advanced computer simulations we show that 4 amino acids, N81, F170, E171, and H365, are required to create a highly efficient CO 2 -fixing enzyme. Together, these 4 residues anchor and position the CO 2 molecule for the attack by a reactive enolate created during the catalytic cycle. Notably, a highly ordered water molecule plays an important role in an active site that is otherwise carefully shielded from water, which is detrimental to CO 2 fixation. Altogether, our study reveals unprecedented molecular details of selective CO 2 binding and C–C-bond formation during the catalytic cycle of nature’s most efficient CO 2 -fixing enzyme. This knowledge provides the basis for the future development of catalytic frameworks for the capture and conversion of CO 2 in biology and chemistry.